### CROSS-RESISTANCE BETWEEN FQ AND DRUG SUSCEPTIBILITY TESTING FOR BDQ AND DLM

MDRTB Symposium Tbilisi, Georgia 22<sup>nd</sup> March 2016

Elisa Ardizzoni, Institute of Tropical Medicine, Antwerp, Belgium



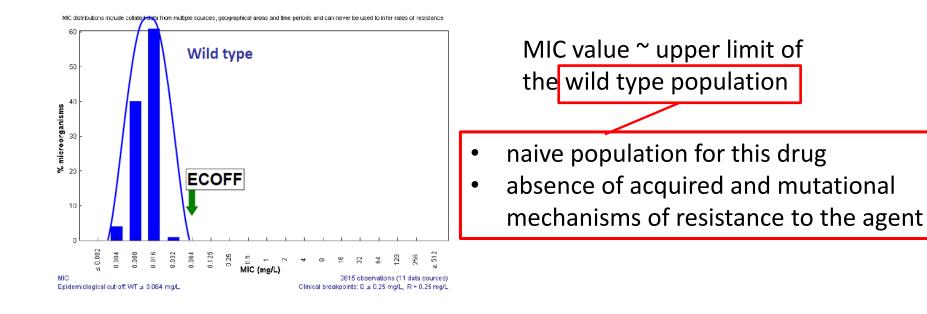
# Definitions

#### Mutant

- Organism with genetic mutations known to confer resistance to a specific drug
  Wild type
- Organism without genetic mutations known to confer resistance

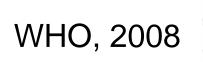
### Minimum inhibitory concentration (MIC)

- It refers to a specific strain
- It is the lowest drug concentration inhibiting visible growth of a microorganism
- − It is tested as ≥ 5 concentrations with 2-fold dilutions (e.g. 0.125 0.25 0.5 1.0 -2.0  $\mu$ g/ml)


### Critical concentration (or cut-off)

- It refers to a DST method
- It is the lowest drug concentration that inhibits growth of at least 95% of strains never exposed to the drug tested and that simultaneously does not suppress resistant strains




## Definitions

- ECOFF
  - MIC value identifying the upper limit of the wild type population





## **Current recommendations**





#### Table 2. Current status of DST methodology and critical concentrations for second-line DST

| Drug group <sup>a</sup>                   | Drug                                                                                    | DST<br>category  | DST<br>method<br>available                                         | DST critical concentrations (µg/ml) |                                  |                                  |                             |                                |
|-------------------------------------------|-----------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------|-------------------------------------|----------------------------------|----------------------------------|-----------------------------|--------------------------------|
|                                           |                                                                                         |                  |                                                                    | Löwenstein-<br>Jensen <sup>b</sup>  | Middlebrook<br>7H10 <sup>b</sup> | Middlebrook<br>7H11 <sup>b</sup> | BACTEC460                   | MGIT960                        |
| Group 1<br>First-line oral anti-TB agents | Isoniazid<br>Rifampicin<br>Ethambutol<br>Pyrazinamide                                   | <br> <br>  <br>  | Solid, liquid<br>Solid, liquid<br>Solid, liquid<br>Liquid          | 0.2<br>40.0<br>2.0<br>-             | 0.2<br>1.0<br>5.0<br>-           | 0.2<br>1.0<br>7.5<br>-           | 0.1<br>2.0<br>2.5<br>100.0  | 0.1<br>1.0<br>5.0<br>100.0     |
| Group 2<br>Injectable anti-TB agents      | Streptomycin<br>Kanamycin<br>Amikacin<br>Capreomycin<br>Viomycin                        | <br>  <br>  <br> | Solid, liquid<br>Solid, liquid<br>Liquid<br>Solid, liquid<br>None  | 4.0<br>30.0<br>-<br>40.0<br>-       | 2.0<br>5.0<br>10.0<br>-          | 2.0<br>6.0<br>10.0<br>-          | 2.0<br>4.0<br>1.0<br>1.25   | 1.0<br>-<br>1.0<br>2.5<br>-    |
| Group 3<br>Fluoroquinolones               | Ciprofloxacin <sup>a</sup><br>Ofloxacin<br>Levofloxacin<br>Moxifloxacin<br>Gatifloxacin |                  | Solid, liquid<br>Solid, liquid<br>Solid, liquid<br>Liquid<br>Solid | 2.0<br>2.0<br>-<br>-                | 2.0<br>2.0<br>2.0<br>-<br>1.0    | 2.0<br>2.0<br>-<br>-<br>-        | 2.0<br>2.0<br>-<br>0.5<br>- | 1.0<br>2.0<br>2.0<br>0.25<br>- |

# **Critical Concentrations revised in 2012**

| Drug group <sup>a</sup>                                                                                                        | Drug                                                                                             | DST<br>method<br>available                                       |                                    |                                  | tical concentrations (μg/ml)     |                            |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------|--|
|                                                                                                                                |                                                                                                  |                                                                  | Löwenstein-<br>Jensen <sup>b</sup> | Middlebrook<br>7H10 <sup>b</sup> | Middlebrook<br>7H11 <sup>b</sup> | MGIT960                    |  |
| Group 1<br>First-line oral anti-TB agents                                                                                      | Isoniazid<br>Rifampicin <sup>c</sup><br>Ethambutol <sup>d</sup><br>Pyrazinamide                  | Solid, liquid<br>Solid, liquid<br>Solid, liquid<br>Liquid        | 0.2<br>40.0<br>2.0<br>-            | 0.2<br>1.0<br>5.0<br>-           | 0.2<br>1.0<br>7.5<br>-           | 0.1<br>1.0<br>5.0<br>100.0 |  |
| Group 2<br>Injectable anti-TB agents                                                                                           | Streptomycin <sup>e</sup><br>Kanamycin<br>Amikacin<br>Capreomycin                                | Solid, liquid<br>Solid, liquid<br>Solid, liquid<br>Solid, liquid | 4.0<br>30.0<br>30.0<br>40.0        | 2.0<br>5.0<br>4.0<br>4.0         | 2.0<br>6.0<br>-<br>-             | 1.0<br>2.5<br>1.0<br>2.5   |  |
| Group 3<br>Fluoroquinolones                                                                                                    | Ofloxacin <sup>f</sup><br>Levofloxacin<br>Moxifloxacin <sup>g</sup><br>Gatifloxacin <sup>h</sup> | Solid, liquid<br>Solid, liquid<br>Solid,liquid<br>Solid          | 4.0<br>-<br>-<br>-                 | 2.0<br>1.0<br>0.5/2.0<br>1.0     | 2.0<br>-<br>-<br>-               | 2.0<br>1.5<br>0.5/2.0<br>- |  |
| Group 4 <sup>i</sup><br>Oral bacteriostatic second-line anti-TB<br>agents                                                      | Ethionamide<br>Prothionamide<br>Cycloserine<br>P-aminosalicylic acid                             | Solid, liquid<br>Solid, liquid<br>Solid<br>Solid, liquid         | 40.0<br>40.0<br>30.0<br>1.0        | 5.0<br>-<br>-<br>2.0             | 10.0<br>-<br>-<br>8.0            | 5.0<br>2.5<br>-<br>4.0     |  |
| Group 5 <sup>i</sup><br>Anti-TB agents with unclear efficacy (not<br>recommended by WHO for routine use in<br>MDR-TB patients) | Clofazimine<br>Amoxicillin/clavulanate<br>Clarithromycin<br>Linezolid                            | Liquid<br>None<br>None<br>Liquid                                 | -<br>-<br>-                        | -<br>-<br>-                      | -<br>-<br>-                      | -<br>-<br>-<br>1.0         |  |



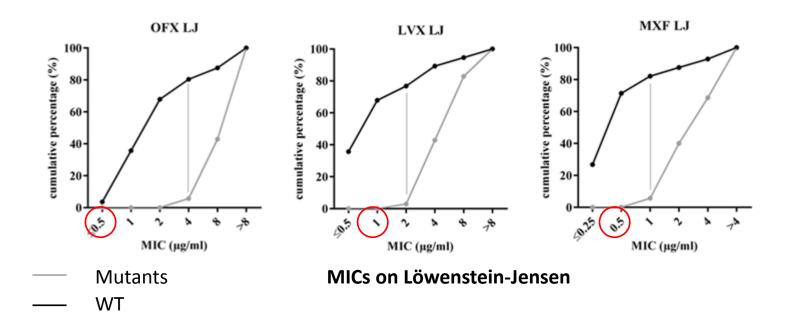


## **Fluoroquinolones cross-resistance**

## Correlation of OFX vs GAT vs Moxi (Rigouts 2016)

|                                                                                                                     |                | GAT MIC (mg/L) |        |        |            |        |        |         |          |
|---------------------------------------------------------------------------------------------------------------------|----------------|----------------|--------|--------|------------|--------|--------|---------|----------|
|                                                                                                                     | OFX MIC (mg/L) | ≤ 0.25         | 0.5    | 1      | 2          | 4      | 8      | >8      | Tot      |
|                                                                                                                     |                | 10             |        |        |            |        |        |         |          |
| _                                                                                                                   | ≤ 0.5          | 12             | 0      | 0      | 0          | 0      | 0      | 0       | 12       |
| MIC Ofx > Gat                                                                                                       | 1              | 83             | 2      | 0      | 0          | 0      | 0      | 0       | 85       |
| $MCOf_{V} = Cot$                                                                                                    | 2              | 59             | 16     | 0      | 0          | 0      | 0      | 0       | 75       |
| MIC Ofx = Gat                                                                                                       | 4              | 1              | 8      | 1      | 0          | 0      | 0      | 0       | 10       |
|                                                                                                                     | 8              | 0              | 1      | 12     | 3          | 2      | 0      | 0       | 18       |
|                                                                                                                     | >8             | 0              | 0      | 6      | 4          | 5      | 0      | 13      | 28       |
|                                                                                                                     | Tot            | 155            | 27     | 19     | 7          | 7      | 0      | 13      | 228      |
|                                                                                                                     |                |                |        | MX     | (F MIC (mք | g/L)   |        |         | _        |
| OFX cutoff = $2.0-8.0 \text{ mg/L}$                                                                                 | OFX MIC (mg/L) | ≤ 0.25         | 0.5    | 1      | 2          | 4      | 8      | >8      | Tot      |
| •                                                                                                                   |                |                |        |        |            |        |        |         |          |
| MXF cutoff= 0.5-2.0 mg/L                                                                                            | ≤ 0.5          | 12             | 0      | 0      | 0          | 0      | 0      | 0       | 12       |
|                                                                                                                     | 1              | 75             | 10     | 0      | 0          | 0      | 0      | 0       | 85       |
|                                                                                                                     | 2              | 35             | 33     | 7      | 0          | 0      | 0      | 0       | 75       |
| MIC Ofx > Mxf                                                                                                       | 4              | 0              | 7      | 3      | 0          | 0      | 0      | 0       | 10       |
|                                                                                                                     | 8              | 0              | 1      | 5      | 10         | 1      | 1      | 0       | 18       |
| MIC Ofx = Mxf                                                                                                       | >8             | 0              | 0      | 2      | 7          | 2      | 3      | 14      | 28       |
|                                                                                                                     | Tot            | 122            | 51     | 17     | 17         | 3      | 4      | 14      | 228      |
|                                                                                                                     |                |                |        | MX     | (F MIC (mg | g/L)   |        |         | -        |
|                                                                                                                     | GAT MIC (mg/L) | ≤ 0.25         | 0.5    | 1      | 2          | 4      | 8      | >8      | Tot      |
|                                                                                                                     | ≤ 0.25         | 120            | 33     | 2      | 0          | 0      | 0      | 0       | 155      |
| MIC Gat > Mxf                                                                                                       | 0.5            | 2              | 17     | 7      | 1          | 0      | 0      | 0       | 12       |
|                                                                                                                     | 1              | 0              | 1      | 7      | 11         | 0      | 0      | 0       | 85       |
| $\mathbf{N}\mathbf{A}\mathbf{I}\mathbf{C}\mathbf{C}\mathbf{a}\mathbf{t} = \mathbf{N}\mathbf{A}\mathbf{v}\mathbf{f}$ | 2              | 0              | 0      | 1      | 5          | 1      | 0      | 0       | 75       |
|                                                                                                                     | 4              | 0              | 0      | 0      | 0          | 2      | 4      | 1       | 10       |
| MIC Gat = Mxf                                                                                                       |                |                |        |        |            |        |        |         | 10       |
| -                                                                                                                   | 8              | 0              | 0      | 0      | 0          | 0      | 0      | 0       | 18       |
| MIC Gat = Mxf                                                                                                       | •              | 0<br>0         | 0<br>0 | 0<br>0 | 0<br>0     | 0<br>0 | 0<br>0 | 0<br>13 | 18<br>28 |

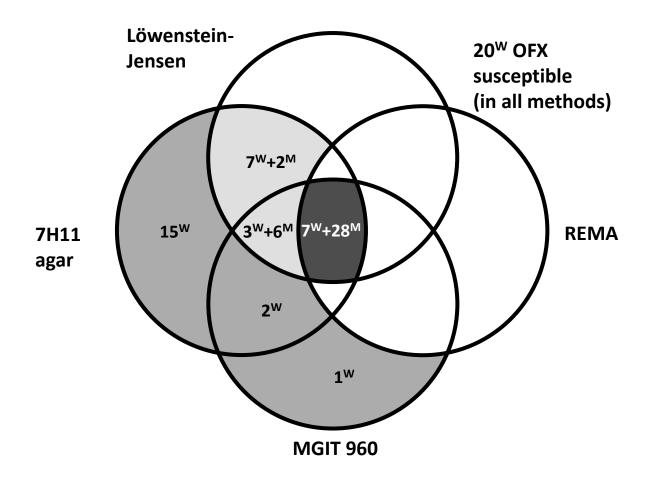



✓ 8 isolates 2.0 mg/L Ofx R and Mfx S

✓ 7 isolates 0.5 mg/L Mfx R and Ofx S

✓ 1 isolate 8.0 mg/L Ofx S and Mfx R




## Correlation between FQs (Coeck et al., 2016)



- On LJ of 53 Ofx phenotypical resistant isolates (WT+MUT), 52 (98%) and 50 (94%) were cross resistant to Lfx and Mxf respectively
- All Ofx phenotypical resistant isolates (only MUT) were resistant to Lfx and Mxf



## Variability between methods (Coeck 2016)



- For MGIT vs LJ gold standard: Se 83% (increasing to 94% considering only MUT isolates) and Sp 92%
- Overall agreement between methods: 60%

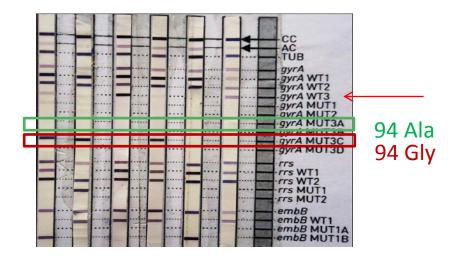


## **Cross-resistance and clinical correlation**

Clinical evidence that the in vitro-activity of newer FQ can overcome resistance to older FQ is sparse:

- > On 106 patients Lfx was superior to Ofx 2 mg/ml resistant strains (Yew, 2003)
- > On 171 MDR patients: Mox and Lfx showed similar efficacy (Lee et 2011)
- While in-vitro and in-vivo correlation for Ofx and Lfx is known, for moxi this is largely unknow
- Correlation for Gat recently proposed (Rigouts et al, 2016):

| GAT MIC<br>(mg/L) | Failure/<br>relapse | Cure | Total | Percentage<br>cured | OR<br>to fail | 95% CI    |
|-------------------|---------------------|------|-------|---------------------|---------------|-----------|
| ≤0.25             | 3                   | 84   | 87    | 96.6                | 1             |           |
| 0.5               | 1                   | 17   | 18    | 94.4                | 1.6           | 0.16-16.8 |
| 1                 | 3                   | 14   | 17    | 82.4                | 6.0           | 1.1-32.8  |
| 2                 | 7                   | 9    | 16    | 56.3                | 21.8          | 4.8-99.3  |
| 4                 | 8                   | 7    | 15    | 46.7                | 32.0          | 6.9-148.5 |
| 8                 | 5                   | 0    | 5     | 0.0                 | undef         |           |
| >8                | 3                   | 0    | 3     | 0.0                 | undef         |           |
| Total             | 30                  | 131  | 161   | 81.4                |               |           |


The odds of failing significantly increased with the increasing of pre-Tx Gat resistance, with a drop in the proportion of cures of about 50% starting from MIC of 2 mg/L

High dose GAT still cures about 50% patients with GAT resistance



## gyr mtations vs MIC

- Most of MUT found in *gyrA* region, correlate to both in-vitro and in-vivo resistance
- Few MUT found in *gyrB*, the majority not conferring phenotypic resistance
- Most common gyrA mutations: 90Val, 94Gly and 94Ala
- All gyrA 94 mutations (except for 94Ala)  $\rightarrow$  high MIC (Gat-Tx cure rate: 30.8%)
- All non-94 gyr mutations + 94Ala  $\rightarrow$  low MIC (Gat-Tx cure rate: 65.6%)
- MDRTB*sl* endorsement under revision (WHO Expert WG Feb 2016)



- Mutations at codon 94 detectable by absence of WT3 probe
- 94Ala linked to MUT 3A, 94Gly to band MUT3C



## **Detection of FQs resistance**

- Only ~50-90% of FQ resistant isolates show MUT
- Also WT isolates found resistant with high MIC
- Unclear role of WT strains with low-level resistance undetected by molecular tests
- Phenotypic tests used as add-on test to detect MUT missed by MDRTBs/
- Diagnostic algorithms should include both genotypic and phenotypic tests

## **DST for Delamanid**

# **Determination of DLM breakpoint in Milan SRL**

- To develop a standardized protocol for rapid Delamanid (DLM) susceptibility testing (DST) using the semi-automated BACTEC<sup>™</sup> MGIT<sup>™</sup> 960
- To define a breakpoint able to accurately discriminate between susceptibility and resistance of MTB towards DLM.

Validation of the *resazurin microtiter assay* (REMA) and MGIT MIC against APM on a panel of 19 Otsuka pre-characterized strains\*

> WGS of study strains to explore genetic polymorphisms in the five genes involved in the F420<sup>†</sup> mediated activation

Determination of MIC distribution in REMA and MGIT of clinical isolates never exposed to the drug. Results confirmed by 7H11 agar based protocol (APM)

Rema plate: ba of colorimetri caused by the

**Rema plate:** based on the reduction of colorimetric indicator (resazurin) caused by the growth of bacteria (color change from blue to pink)

<sup>\*</sup> Strains provided by Otsuka with known level of resistance (control strains)

<sup>+</sup> Mutations in genes involved in coenzyme F420 biosynthesis and metabolism [*fbiA (Rv3261), fbiB (Rv3262), fbiC* 

(Rv1173), fgd1 (Rv0407)] has been proposed as possible mechanisms of resistance to DLM (Choi KP et al., 2002)



### **REMA validation: MIC determination of control strains**

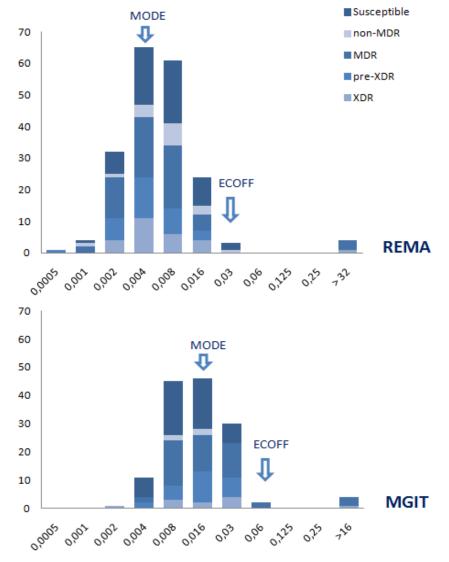
- Otsuka has independently established a 7H11-based DST method for testing strains and based on MIC performed on a collection of WT and resistant mutant *in vitro* generated strains defined a breakpoint of 0,2 mg/L.
- Determination of DLM MIC for a panel of 19 reference strains using REMA (from 0,0005 to 32 mg/L), MGIT and 7H11 (from 0,0005 to 16 mg/L):



5 resistant strains (MIC > 0.2 mg/L)14 susceptible strains (MIC < 0.2 mg/L)</li>

100% concordance of all three methods






## WGS results for control strains

| Code | #strain | MIC | ddn (Rv3547)                    | fgd (Rv0407)     | fbiA (Rv3261)  | fbiB (Rv3262) | fbiC (Rv1173)             | Lineage      |
|------|---------|-----|---------------------------------|------------------|----------------|---------------|---------------------------|--------------|
| OTSK | N0268   | R   | Insertion pos: 3986911          | Phe 320 (silent) | wt             | wt            | wt                        | Beijing      |
| OTSK | N1002   | R   | pos 3987149 CA->C DEL           | Phe 320 (silent) | wt             | wt            | wt                        | Beijing      |
| OTSK | N0185   | R   | INSERTION + GTCA (pos: 3987023) | wt               | wt             | wt            | Trp678Gly Leu 55 (silent) | LAM          |
| OTSK | N0184   | R   | Pos 3987023 G->GTCA INS         | wt               | wt             | wt            | Trp678Gly Leu 55 (silent) | LAM          |
| OTSK | N0652   | R   | Leu107Pro                       | wt               | wt             | wt            | wt                        | LAM          |
| OTSK | N0339   | S   | wt                              | wt               | wt             | wt            | wt                        | LAM          |
| OTSK | N0085   | S   | wt                              | wt               | wt             | wt            | wt                        | LAM          |
| OTSK | N0001   | S   | wt                              | Phe 320 (silent) | wt             | wt            | wt                        | Beijing      |
| OTSK | N0082   | S   | wt                              | Phe 320 (silent) | wt             | wt            | wt                        | Beijing      |
| OTSK | N0299   | S   | wt                              | wt               | wt             | wt            | Asp375Asn                 | LAM          |
| OTSK | N0156   | S   | wt                              | Phe 320 (silent) | wt             | wt            | wt                        | Beijing      |
| OTSK | N0400   | S   | wt                              | Phe 320 (silent) | Val 5 (silent) | wt            | wt                        | EAI "Manila" |
| OTSK | N0117   | S   |                                 |                  |                |               |                           |              |
| OTSK | N0110   | S   | wt                              | Phe 320 (silent) | wt             | wt            | wt                        | Beijing      |
| OTSK | N0678   | S   | wt                              | wt               | wt             | wt            | wt                        | LAM          |
| OTSK | N0097   | S   | wt                              | wt               | wt             | wt            | Try678Gly Leu 55 (silent) | LAM          |
| OTSK | N0667   | S   | wt                              | wt               | wt             | wt            | Lys 8 (silent)            | Euro-Am Sup  |
| OTSK | N0946   | S   | wt                              | wt               | wt             | wt            | wt                        | Euro-Am Sup  |
| OTSK | N0193   | S   | wt                              | Phe 320 (silent) | wt             | wt            | wt                        | Beijing      |



## **MIC results from clinical isolates**



• 1 XDR and 3 MDR strains with high MIC, with resistance confirmed by 7H11 APM

#### MIC of Delamanid [mg/L]



Number of strains

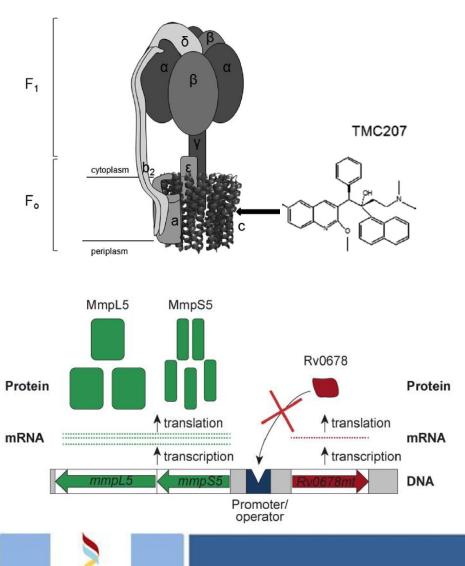
Emerging Bacterial Pathogens Unit

## WGS results for clinical isolates

| Phenotype | Lineage             | fgd1       | fbiA      | fbiB      | fbiC      | ddn Rv3547 | nt change         | MIC    |
|-----------|---------------------|------------|-----------|-----------|-----------|------------|-------------------|--------|
| MDR       | Beijing             | wt         | wt        | wt        | wt        | Trp88STOP  | TGG->TGA          | ≥ 32   |
| MDR       | Beijing             | wt         | wt        | wt        | wt        | Trp88STOP  | TGG->TGA          | ≥ 32   |
| MDR       | Beijing             | wt         | wt        | wt        | wt        | Trp88STOP  | TGG->TGA          | ≥ 32   |
| DR        | EAI                 | wt         | wt        | wt        | wt        | Arg72Trp   | AGG->TGG          | 0,002  |
| MDR       | Ural                | wt         | wt        | wt        | wt        | Glu83Asp   | GAG->GAT          | 0,001  |
| MDR-AG    | EAI                 | wt         | wt        | wt        | wt        | Arg72Trp   | AGG->TGG          | 0,004  |
| MDR       | M. africanum WA2    | Lys296Glu* | wt        | wt        | wt        | wt         | AAG->GAG          | 0,001  |
| MDR       | Harlem              | Lys270Ser* | wt        | wt        | wt        | wt         | AAG->ATG          | 0,004  |
| XDR       | Beijing             | Lys250STOP | wt        | wt        | wt        | wt         | AAG->TAG          | ≥ 32   |
| MDR-FQ    | Eur-Am Superlineage | wt         | Thr302Met | wt        | wt        | wt         | ACG->ATG          | 0,001  |
| MDR       | Eur-Am Superlineage | wt         | Thr302Met | wt        | wt        | wt         | ACG->ATG          | 0,002  |
| DR        | Eur-Am Superlineage | wt         | Gln120Arg | Phe220Leu | wt        | wt         | CAA->CGA;TTC->TTA | 0,0016 |
| DR        | Eur-Am Superlineage | wt         | Gln120Arg | wt        | wt        | wt         | CAA->CGA          | 0,008  |
| S         | Eur-Am Superlineage | wt         | Gln120Arg | wt        | wt        | wt         | CAA->CGA          | 0,004  |
| S         | Eur-Am Superlineage | wt         | Gln120Arg | wt        | wt        | wt         | CAA->CGA          | 0,008  |
| MDR       | Beijing             | wt         | wt        | Phe220Leu | wt        | wt         | TTC->TTA          | 0,004  |
| MDR       | Delhi/CAS           | wt         | wt        | Lys448Arg | wt        | wt         | AAG->AGA          | 0,008  |
| S         | Eur-Am Superlineage | wt         | wt        | Leu447Arg | wt        | wt         | CTA->CGA          | 0,004  |
| S         | Eur-Am Superlineage | wt         | wt        | wt        | Thr273Ala | wt         | ACT->GCT          | 0,002  |
| S         | Eur-Am Superlineage | wt         | wt        | wt        | Thr273Ala | wt         | ACT->GCT          | 0,004  |
| S         | Eur-Am Superlineage | wt         | wt        | Phe220Leu | Thr273Ala | wt         | TTC->TTA          | 0,008  |
| S         | Eur-Am Superlineage | wt         | wt        | wt        | Thr273Ala | wt         | ACT->GCT          | 0,008  |
| S         | Beijing             | wt         | wt        | wt        | wt        | Thr681lle  | ACC->ATC          | 0,004  |






## **Conclusion for DLM**

- → DST for DLM can be performed in both MGIT and REMA at 0.125 mg/L (close to ECOFF, according to EUCAST definition)
- $\rightarrow$  Pre-exposure high level resistance was observed on clinical strains
- $\rightarrow$  Low level resistance was not observed
- → WGS analysis in genes involved in the activation pathways show presence of several mutations non related to an increased MIC



## **DST for Bedaquiline**

## TMC207 or Bedaquiline (BDQ)



• **Target:** *atpE* (*Rv1305*) gene that encodes the subunit *c* of ATP synthase

 Off target mutations in *Rv0678* gene cause resistance to BDQ by up-regulation of MmpL5/Mmps5 efflux pump gene expression (Andries K *et al., PLoS One* 2014)

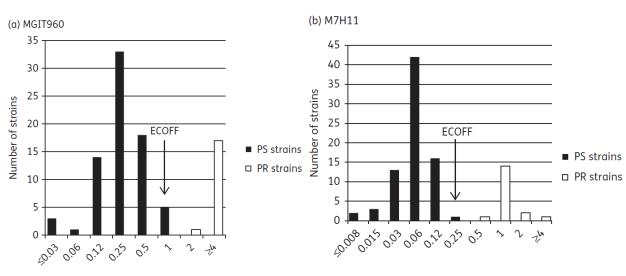
• Cross-resistance between Bedaquiline and Clofazimine (CLF) (Hartkoorn RC *et al.,* Antimicrobial Agents and Chemotherapy 2014)

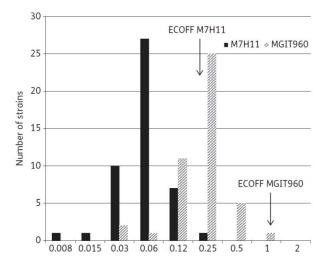
## **Bedaquiline DST in Clinical trials**

- Drug susceptibility testing (DST) in the Phase 2 clinical studies (Diacon et al. 2009; Diacon et al. 2012; Diacon et al. 2014; Pym et al. 2013), was performed by:
- 7H11 agar dilution method
- 7H9 broth microdilution method using the resazurin microtitre assay (REMA) (Palomino et al. 2002; Martin et al. 2003)
- the standard QC strain H37Rv is used under the same conditions to ensure that the BDQ MIC of the reference falls within a predefined QC range



## **QC MIC ranges**


- Provisional BDQ MIC QC ranges against MTB H37Rv were established at Janssen US
- One study carried out in 8 laboratories defined the BDQ MIC QC ranges against the MTB reference strain H37Rv were as 0.015 to 0.12 μg/mL on 7H10 and 7H11 agar and 0.015 to 0.06 μg/mL in 7H9 broth.
- Validation by independent scientists as an effort to produce standard QC values to guide further tests




## Bedaquiline DST on MGIT (Torrea G al, 2015)

#### Distribution of BDQ MIC in MGIT and 7H11 for PR and PS strains

#### Distribution of BDQ MIC for WT strains





| -            | M7H11 results |    |       |  |  |  |
|--------------|---------------|----|-------|--|--|--|
| MGIT results | R             | S  | Total |  |  |  |
| R            | 18            | 0  | 18    |  |  |  |
| S            | 0             | 74 | 74    |  |  |  |
| Total        | 18            | 74 | 92    |  |  |  |

MGIT results obtained using ECOFF 1.0 mg/L breakpoint 7H11 results obtained using ECOFF 0.25 mg/L breakpoint



# **DST for BDQ: conclusions**

| Medium           | ECOFF<br>(µg/ml) | Breakpoint<br>(µg/ml) | QC range H37Rv<br>(µg/ml) |
|------------------|------------------|-----------------------|---------------------------|
| 7H10 agar        |                  |                       | 0.015 - 0.12              |
| 7H11 agar        | 0.25             | 0.25                  | 0.015 - 0.12              |
| 7H9 broth (REMA) |                  |                       | 0.06 - 0.015              |
| MGIT960          | 1.0              | 1.0                   | 0.12 - 0.5                |
| IJ               | NA               | NA                    | NA                        |

- Cross-resistance between Cfz and BDQ due to common target mutations in *Rv0687* gene have been documented (Andries et al; 2014)
- It is still unknown if prior Cfz treatment affects efficacy of BDQ treatment (Torrea et al; 2015)



## Acknowledgments

Slides covering DST for DLM and BDQ were kindly provided Dr Daniela Maria Cirillo, San Raffaele Scientific Institute, Milan, slightly modified for this presentation.

I also thank Dr Leen Rigouts (ITM), for her input on the preparation of the sides on FQ cross-resistance

